Modeling of Oxygen Transport and Cellular Energetics Explains Observations on In Vivo Cardiac Energy Metabolism
نویسنده
چکیده
Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP), and phosphocreatine (CrP) have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 mumol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 mumol min(-1) g(-1), model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded hypoperfusion. These findings suggest that the observed stability of energy metabolites emerges as a property of a properly constructed model of cardiac substrate transport and mitochondrial metabolism. In addition, the validated model provides quantitative predictions of changes in phosphate metabolites during cardiac ischemia.
منابع مشابه
Imaging and Modeling of Myocardial Metabolism
Current imaging methods have focused on evaluation of myocardial anatomy and function. However, since myocardial metabolism and function are interrelated, metabolic myocardial imaging techniques, such as positron emission tomography, single photon emission tomography, and magnetic resonance spectroscopy present novel opportunities for probing myocardial pathology and developing new therapeutic ...
متن کاملA journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3
Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...
متن کاملCorrelation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart.
The relationship between cardiac energy metabolism and the depression of myocardial performance during oxygen deprivation has remained enigmatic. Here, we combine in vivo (31)P-NMR spectroscopy and MRI to provide the first temporal profile of in vivo cardiac energetics and cardiac performance of an anoxia-tolerant vertebrate, the freshwater turtle (Trachemys scripta) during long-term anoxia exp...
متن کاملComparison of the effects of ORG 30029, dobutamine and high perfusate calcium on function and metabolism in rat heart.
Cardiac contractility may be enhanced via multiple cellular mechanisms resulting in varied effects on cardiac energetics. The mechanisms that account for the varied energetic responses are not well understood. The purpose of this investigation was to compare the effects of the calcium sensitizing agent ORG 30029 (N-hydroxy-5,6-dimethoxy-benzo[b]thiophene-2-carboximidamide hydrochloride, a calci...
متن کاملOral presentations O8.1 Energy metabolism of the heart — changes in pathology and perspectives of therapy
Cardiac energy metabolism is essential for maintenance of the mechanical function and any disturbances of energetics translate directly into cardiac dysfunction. In addition to well recognized effects of insufficient coronary perfusion and oxygen deficit, number of other issues has been recognized. Regulation of cardiac substrate preference has been found interesting not only for basic research...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Computational Biology
دوره 2 شماره
صفحات -
تاریخ انتشار 2006